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Talk Outline and Overview

Policy Optimization and Stochastic Linear Control

Connections to risk-sensitive control;
Mixed H2/H∞ control theory.

The case for convergence analysis in stochastic PO.

Kleinman’s algorithm, redux.
Kleiman’s algorithm in an iterative best response setting;
PO Convergence in best response settings.

Robustness margins in model- and sampling- settings.

PO as a discrete-time nonlinear system;
Kleiman and input-to-state-stability;
Robust policy optimization as a small-input stable state
optimization algorithm
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Research Significance

(Deep) RL and modern AI

Robotic manipulation (Levine et al., 2016), text-to-visual
processing (DALL-E), Atari games (Mnih et al., 2013),
e.t.c.

Policy optimization (PO) is fundamental to modern AI
algorithms’ success.

Major success story: functional mapping of observations to
policies.

But how does it work?

Lekan Molu Continuous-Time Stochastic Policy Optimization
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Policy Optimization – General Framework

PO encapsulates policy gradients (Kakade, 2001) or PG,
actor-critic methods (Vrabie and Lewis, 2011), trust
region PO Schulman et al. (2015), and proximal PO
methods (Schulman et al., 2017).

PG particularly suitable for complex systems.

minJ(K )

subject to K ∈ K (1)

where K = {K1,K2, · · · ,Kn}.

J(K ) could be tracking error, safety assurance,
goal-reaching measure of performance e.t.c. required to be
satisfied.
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Continuous-time RL control applications

A little randomness in a system’s mathematical model
coefficients?

Population growth model: dN/dt = a(t)N(t), N(0) = N0;
growth rate a(t) subject to random effects e.g.
a(t) = r(t)+ “noise”.
We only know the distribution of “noise”.

Filtering and state estimation problems where the nature
of the noise is unknown, but it is observed via sensor
measurements.

Kalman + Bucy Filters – aerospace (Apollo, Mariner etc.).
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Continuous-time RL control applications

Semielliptic P.D.E.s with Dirichlet boundary value
problems e.g. slender flexible rods, Cosserat dynamics etc:

∆q =
∑n

i=1

∂2q

∂ξ2i
= 0 ∈ Ω, q = q→ on ∂Ω, Ω ⊂ Rn

An economic portfolio problem where the price, p(t), of a
stock satisfies a stochastic differential equation e.g.
dp/dt = (a+ α · “noise”)p for a > 0, α ∈ reline.

Call options pricing: The Black-Scholes option price
formula.
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Policy Optimization – Open questions

Gradient-based data-driven methods: prone to divergence
from true system gradients.

Challenge I: Optimization occurs in non-convex objective
landscapes.

Get performance certificates as a mainstay for control
design: Coerciveness property (Hu et al., 2023).

Challenge II: Taming PG’s characteristic high-variance
gradient estimates (REINFORCE, NPG, Zeroth-order
approx.).

Hello, (linear) robust (H∞-synthesis) control!
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Policy Optimization – Open questions

Challenge III: Under what circumstances do we have
convergence to a desired equilibrium in RL settings?

Challenge IV: Stochastic control, not deterministic control
settings.

models involving round-off error computations in floating
point arithmetic calculations; the stock market; protein
kinetics.

Challenge V: Continuous-time RL control.

Very little theory. Lots of potential applications
encompassing rigid and soft robotics, aerospace or finance
engineering, protein kinetics.
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H∞-Control Under Model Mismatch

dx(t) = Ax(t)dt + Bu(t)dt + Ddw(t),

z(t) = Cx(t) + Eu(t), α > 0;

Lekan Molu Continuous-Time Stochastic Policy Optimization
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Tools: Complexity, Convergence, Robustness.

Risk-sensitive H∞-control (Glover, 1989) and discrete-
and continuous-time mixed H2/H∞ design (Khargonekar
et al., 1988; Hu et al., 2023):

min. upper bound on H2 cost subject to satisfying a set of
risk-sensitive (often H∞) constraints (Basar, 1990):

minK∈KJ(K ) := Tr(PKDD
⊤) (2)

subject to K := {K |ρ(A− BK ) < 1, ∥Tzw (K )∥∞ < γ}

PK : solution to the generalized algebraic Riccati equation
(GARE);
A,B,D,K : standard closed-loop system matrices;
∥Tzw (K )∥∞: H∞-norm of the closed-loop transfer
function from a disturbance input w to output z .
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Tools: Complexity, Convergence, Robustness.

Infinite-horizon

discrete-time deterministic LQR settings (Fazel et al.,
2018):

min
K∈K

E
∞∑
t=0

(x⊤t Qxt+u⊤t Rut) s.t. xt+1 = Axt+But , x0 ∼ P0

discrete-time LQ problems under multiplicative
noise (Gravell et al., 2021):
minπ∈Π Ex0,{δi},{γi}}

∑∞
t=0(x

⊤
t Qxt + u⊤t Rut)

subject to xt+1 = (A+
∑p

i=1 δtiAi )xt+(B+
∑q

i=1 γtiBi )ut ;

Lekan Molu Continuous-Time Stochastic Policy Optimization
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Mainstay

Continuous-time infinite-dimensional linear systems.

Disturbances enter additively as random stochastic Wiener
processes.

Many natural systems admit uncertain additive Brownian
noise as diffusion processes.

Theoretical analysis machinery: Îto’s stochastic calculus.

Goal: keep controlled process, z , small i.e.

∥z∥2 =
(∫
|z(t)|2dt

)1/2

,

Under a minimizing u(x(t)) ∈ U in spite of unforeseen
w(t) ∈ W ⊆ Rq.
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Minimization Objective and Risk-Sensitive Control

Risk-sensitive linear exponential quadratic Gaussian
objective functional (Jacobson, 1973):

min
u∈U
Jexp(x0, u,w) = E

∣∣∣∣
x0∈P0

exp

[
α

2

∫ ∞

0
z⊤(t)z(t)dt

]
,

subject to dx(t) = Ax(t)dt + Bu(t)dt + Ddw(t),

z(t) = Cx(t) + Eu(t), α > 0; (3)

where dw/dt = N (0,W ), x0 = N (0, µ), and
(x0,w(t)) ⊆ (Ω,F ,P).
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Minimization Objective and Risk-Sensitive Control

A Taylor series expansion of (3) reveals:

Jexp(x0, u,w) =

lim
T→∞

E
∣∣∣∣
x0∈P0

[
α

2

T∑
t=0

z⊤(t)z(t)

]
+

α2

4
var

[
T∑
t=0

z⊤(t)z(t)

]
.

(4)

Consider the variance term
α2

4
var

[∑T
t=0 z

⊤(t)z(t)
]
→ ϵ.

α a measure of risk-propensity if α > 0;
α a measure of risk-aversion if α < 0;
α = 0 implies solving a classic LQP.
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RL PO as a Risk-Sensitive Control Problem

RL (via PG) computes high-variance gradient estimates
from Monte-Carlo trajectory roll-outs and bootstrapping.

If we set α > 0 in the LEQG problem (3), we have a
controlled setting where we can study the theoretical
properties of RL-based PO.

Framework: an ADP policy iteration (PI) in a continuous
PO setting.

LEQG also interprets as a risk-attenuation algorithm.
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Contributions

A two-loop iterative alternating best-response procedure
for computing the optimal mixed-design policy;

Rigorous convergence analyses follow for the model-based
loop updates;

In the absence of exact system models, we provide an
input-to-state-stable hybrid robust stabilization scheme.
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Problem Setup

For α > 0, the cost

Jexp(x0, u) = E
∣∣∣∣
x0∈P0

exp
[
α
2

∫∞
0 z⊤(t)z(t)dt

]
, becomes

E
∣∣∣∣
x0∈P0

exp

{
α

2

∫ ∞

0

[
x⊤(t)Qx(t) + u⊤(t)Ru(t)

]
dt

}
, (5)

with the associated closed loop transfer function,

Tzw (K ) = (C − EK ) (sI − A+ BK )−1D. (6)
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Nonconvexity and Coercivity in PG

Coercivity: iterates remain feasible and strictly separated
from the infeasible set as the cost decreases.

Figure: Coercivity property of PG on LQR and in mixed-design settings.
Credit: (Zhang et al., 2019).
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Assumptions

C⊤C = Q ≻ 0, ET (C , E ) = (0, R) for some R ≻ 0.

Coercivity satisfaction: (A,B) is stabilizable;

Optimization satisfaction: (
√
Q,A) is detectable.
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PO and Dynamic Games: Finite-horizon Gain

Coercivity: feasibility set of optimization iterates

K = {K : λi (A− B1K ) < 0, ∥Tzw (K )∥∞ < γ}. (7)

Finite-horizon optimization u⋆(t) = −K ⋆
leqg x̂(t).

K ⋆
leqg = R−1B⊤Pτ , and Pτ is the unique, symmetric,

positive definite solution to the algebraic Riccati equation
(ARE)

A⊤Pτ + PτA− Pτ (BR
−1B⊤ − α−2DD⊤)Pτ = −Q. (8)

(Cui and Molu, 2023, Proposition I), (Duncan, 2013) .

∞-horizon case: P⋆ ≜ P∞ = limτ→∞ Pτ , and
K ⋆
leqg ≜ K∞ = limτ→∞ Kτ [Theorem on limit of monotonic

operators (Kan, 1964)].
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Solving the LEQG Problem

Directly solving the LEQG problem (3) in policy-gradient
frameworks incurs biased gradient estimates during
iterations;

Affects risk-sensitivity preservation in infinite-horizon LTI
settings (see (Zhang et al., 2021; Zhang et al., 2019));

Workaround: an equivalent dynamic game formulation to
the stochastic LQ PO problem.
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Two-Player Zero-Sum Game and LEQG

An equivalent closed-loop two-player game
connection (Cui and Molu, 2023, Lemma 1):

min
u∈U

max
ξ∈W
J̄γ(x0, u,ξ)

subject to dx(t) = Ax(t)dt + Bu(t)dt + Ddw(t),

z(t) = Cx(t) + Eu(t) (9)

J̄γ(x0, u, ξ) = Ex0∼P0, ξ(t)

∫ ∞

0

[
x⊤(t)Qx(t) + u⊤(t)Ru(t)

]
dt

−Ex0∼P0, ξ(t)

∫ ∞

0

[
γ2ξ⊤(t)ξ(t)

]
dt

, ξ(≡ dw) ∼ N (0,Σ), and γ ≡ α.
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Proof Sketch (Cui and Molu, 2023, Lemma 1)

If a non-negative definite (n.n.d ) GARE (8)’s solution
exists, then a minimal realization P⋆ must exist.

Existence: the bounded real Lemma (Zhou et al., 1996).

If (A,Q
1
2 ) is observable, then every n.n.d solution of (8),

i .e. P⋆, is positive definite.

For a n.n.d P⋆, we essentially have a Nash (equivalently a
Saddle) equilibrium with J̄γ = J γ .
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Proof Sketch (Cui and Molu, 2023, Lemma 1)

If J̄γ is finite for some γ = γ̂ > 0, then J̄γ is bounded (if
and only if the pair (A,B) is stabilizable).

For a bounded J̄γ for some γ = γ̂ and for optimal
K ⋆ = R−1B⊤PK ,L, L

⋆ = γ−2D⊤PK ,L and all γ > γ̂, J̄γ
admits the closed-loop matrices

A⋆
K = A− BK ⋆, A⋆

K ,L = A⋆
K + DL⋆. (10)

Whence, the saddle-point optimal controllers are

u⋆(x(t)) = −K ⋆x(t), ξ⋆(x(t)) = L⋆x(t). (11)
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Model-based PO

Define {p, q}p̄,q̄p=1,q=1 where (p̄, q̄) ∈ N+ as nested
iteration indices for a gain Kp (in an outer loop) and an
alternating gain Lq(Kp) (in an inner-loop).

Problem 1 (Model-Based Policy Iteration)

Given system matrices A,B,C ,D,E , find the optimal controller
gains Kp, Lq(Kp) that robustly stabilizes (3) such that the
controller gains do not leave the set of all suboptimal
controllers denoted by

K̆ = {(Kp, Lq(Kp)) : λi (A
p
K ) < 0, λi (A

p,q
K ,L) < 0,

∥Tzw (Kp, Lq(Kp))∥∞ < γ for all (p, q) ∈ N}. (12)
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Model-based Policy Optimization

Further, define the following closed-loop matrix identities

Ap
K = A− BKp, Ap,q

K ,L = Ap
K + DLq(Kp),

Qp
K = Q + K⊤

p RKp, Aγ
K = Ap

K + γ−2DD⊤Pp
K . (13)

Equation (13) informs the value iterations of the Riccati
equations for the outer and inner loops.

Ap⊤
K Pp

K + Pp
KA

p
K + Qp

K + γ−2Pp
KDD

⊤Pp
K = 0, (14a)

Kp+1 = R−1B⊤Pp
K . (14b)

A
(p,q)⊤

K ,L Pp,q
K ,L + Pp,q

K ,LA
p,q
K ,L + Qp

K − γ2L⊤q (Kp)Lq(Kp) = 0 (15a)

Kp+1 = R−1B⊤Pp,q
K , Lq+1(Kp) = γ−2D⊤Pp,q

K ,L. (15b)
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Kleinman’s Algorithm

An iterative algorithm for solving infinite-time Riccati
equations (Kleinman, 1968).

Based on a successive substitution method.

For a deterministic LTI system’s cost matrix Pd , the value
iterations of Pk

d are monotonically convergent to P⋆
d .

Kleinman’s algorithm as policy iteration

Choose a stabilizing control gain K0, and let p = 0.
(Policy evaluation) Evaluate the performance of Kp from
the GARE’s solution.
(Policy improvement) Improve the policy:
Kp = −R−1B⊤Pp

d .
Advance iteration p ← p + 1.
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Model-based Policy Iteration
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Convergence Analyses: Outer Loops

Lemma 1

Under our assumptions and for the ARE (14), if K0 ∈ K, then
for any p ∈ N+, we must have the following conditions for the
optimal K ⋆ and P⋆,

(1) Kp ∈ K;
(2) P0

K ⪰ P1
K ⪰ · · ·P

p
K ⪰ · · · ⪰ P⋆;

(3) limp→∞∥Kp − K ∗∥F = 0, limp→∞∥Pp
K − P∗∥F = 0.
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Proof Sketch: The Bounded Real Lemma

Under our standard stabilizability and observability
assumptions, for a stabilizing gain K , the following conditions
are equivalent

∥T (K )∥∞ < γ;

The Riccati equation

A⊤
KPK + PKAK + C⊤C + K⊤RK+

γ−2PKDD
⊤PK = 0,

(16)

admits a unique positive definite solution PK ⪰ 0 for a
Hurwitz matrix (AK + γ−2DD⊤PK );
There exists PK ≻ 0 such that

A⊤
KPK + PKAK + Q + K⊤RK + γ−2PKDD

⊤PK ≺ 0.

(17)
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Stabilizing Proof Sketch

At an iteration 0, find a K0 that is stabilizing (Molu, 2023,
Alg. 1), so that K0 ∈ K by the bounded real Lemma.

For p > 0, set Qp+1
K = C⊤C +K⊤

p+1RKp+1, the outer loop
GARE is

For p > 1, Kp ∈ K. Rest: completion of squares, the
bounded real Lemma, and the theorem on the “limit of
monotonic operators.” (Kan, 1964).

Lekan Molu Continuous-Time Stochastic Policy Optimization



Continuous-
Time

Stochastic
Policy

Optimization

Lekan Molu

Outline and
Overview

Risk-sensitive
control

Contributions

Setup

Assumptions

Optimal Gain

Model-based
PO

Outer loop

Stabilization and
Convergence

Sampling-
based PO

Discrete-time
system

Sampling-based
nonlinear system

Robustness Analyses

Numerical
Results

References

37/95

Convergence Analysis

In (Zhang et al., 2019, Theorem A.7 and A.8), the authors
showed that this controller update in the outer-loop has a
global sub-linear and local quadratic convergence rates.

We now show that the outer-loop iteration has a global
linear convergence rate.
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Convergence Analysis: Outer Loop

Lemma 2

Let Ψ = (Kp+1 − Kp)
⊤R(Kp+1 − Kp); and Ψ = Ψ⊤ ⪰ 0.

Furthermore, let Φ ∈ Rn×n be Hurwitz so that
Θ =

∫∞
0 e(Φ

⊤t)Ψe(Φt)dt and define c(Φ) = log(5/4)∥Φ∥−1.
Then, ∥Θ∥ ≥ 1

2c(Φ)∥Ψ∥.
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Convergence Analysis: Outer Loop

Remark 1

For AK = A− BK , we know from the bounded real
Lemma (Zhang et al., 2019, Lemma A.1) that the Riccati
equation

A⊤
KPK + PKAK + QK + γ−2PKDD

⊤PK = 0 (18)

admits a unique positive definite solution PK ≻ 0 with a
Hurwitz (AK + γ−2DD⊤PK ).
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Optimality of the Iteration

Lemma 3 (Optimality of the iteration)

Consider any K ∈ K, let K ′ = R−1B⊤PK (where PK is the
solution to (18), and ΨK = (K − K ′)⊤R(K − K ′). If ΨK = 0,
then K = K ⋆.

Proof.

Since R ≻ 0, ΨK = 0 implies K = K ′. Therefore at ΨK = 0,
we must have K = K ′ which implies that PK = P ′

K . If K = K ′

and PK = P ′
K , it suffices to conclude that K ′ = K ≜ K ⋆ where

K ⋆ = R−1B⊤P⋆. Hence, ΨK = 0 is tantamount to PK = P⋆

and K = K ⋆.
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Bound on Cost Difference Matrix

Lemma 4 (Bound on Cost Difference Matrix)

For any h > 0, define Kh := {K ∈ K|Tr(Pp
K − P⋆) ≤ h}. For

any K ∈ Kh, let K
′ := R−1B⊤Pp

K , where Pp
K is the p’th

iterate’s solution to (18), and ΨKp = (Kp − K ′
p)

⊤R(Kp − K ′
p).

Then, there exists b(h) > 0, such that
∥Pp

K − P⋆∥F ≤ b(h)∥ΨKp∥F .
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Bound on Cost Difference Matrix

For A⋆ = A− BR−1B⊤P⋆ + γ−2DD⊤P⋆, rewrite the
closed-loop Riccati equation as

A⋆⊤Pp
K + Pp

KA
⋆ + QKp + (K ⋆ − Kp)

⊤RK ′
p

+ K ′⊤
p R(K ⋆ − Kp)− γ−2P⋆DD⊤Pp

K − γ−2Pp
KDD

⊤P⋆

+ γ−2Pp
KDD

⊤Pp
K = 0. (19)

Then do completion of squares so that

A⋆⊤(Pp
K − P⋆) + (Pp

K − P⋆)A⋆ +ΨKp

+ γ−2(Pp
K − P⋆)DD⊤(Pp

K − P⋆)

− (K ′
p − K ⋆)⊤R(K ′

p − K ⋆) = 0.

(20)
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Proof

Implicit function theorem: Pp
K = f (Kp ∈ K), f (·) ∈ Cn.

There exists a ball Bδ(K ⋆) := {K ∈ K|∥K − K ⋆∥F ≤ δ},
such that A(K ) is invertible for any K ∈ Kh ∩ Bδ(K ⋆).

A(Kp) = In⊗A⋆⊤+(A−BR−1B⊤Pp
K +γ−2DD⊤Pp

K )
⊤⊗ In.

Therefore, for any K ∈ Kh ∩ Bδ(K ⋆),

∥P̃p
K∥F ≤ σ−1(A(Kp))∥ΨKp∥F .

Similarly, for any K ∈ Kh ∩ Bcδ (K ⋆), where Bc is a
complement of B, ΨKp ̸= 0 and there exists a constant
b1 > 0 such that ∥ΨKp∥ ≥ b1.

Set b2 = maxK∈Kh∩Bδ(K⋆) σ
−1(A(K )) and

b(h) = max{b2, h+Tr(P⋆)
b1

}, then the proof follows
immediately.
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Outer Loop Convergence: Exponential Stability of
Pp
K

Theorem 2

For any h > 0 and K0 ∈ Kh, there exists α(h) ∈ R such that
Tr(Pp+1

K − P⋆) ≤ α(h)Tr(Pp
K − P⋆). That is, P⋆ is an

exponentially stable equilibrium.
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Convergence Analysis: Inner Loop

Now, we analyze the monotonic convergence rate of the
inner loop.

Given arbitrary gains Kp ∈ K and Lq(Kp) ∈ L, and
Pp,q
K ,L ≻ 0 solution of the inner-loop Lyapunov equation,

the cost matrix Pp,q
K ,L monotonically converges to the

solution of (15).

A
(p,q)⊤

K ,L Pp,q
K ,L + Pp,q

K ,LA
p,q
K ,L + Qp

K − γ2L⊤q (Kp)Lq(Kp) = 0

(21a)

Kp+1 = R−1B⊤Pp,q
K , Lq+1(Kp) = γ−2D⊤Pp,q

K ,L. (21b)
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Convergence Analysis: Inner Loop I

Lemma 5

Suppose that L0(K0) is stabilizing, then for any q ∈ N+ (with
Pp,q̄
K ,L as the solution to (15)), i .e.

A
(p,q)⊤

K ,L Pp,q
K ,L + Pp,q

K ,LA
p,q
K ,L + Qp

K − γ2L⊤q (Kp)Lq(Kp) = 0 (22a)

Kp+1 = R−1B⊤Pp,q
K , Lq+1(Kp) = γ−2D⊤Pp,q

K ,L. (22b)

Then, the following statements hold

1 Ap,q
K ,L is Hurwitz;

2 Pp,q̄
K ,L ⪰ · · · ⪰ P

(p,q+1)
K ⪰ Pp,q

K ⪰ · · · ⪰ Pp,0
K ,L; and

3 limq→∞∥Pp,q
K ,L − Pp,q̄

K ,L∥F = 0.
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Convergence Rate – Inner Loop

Lemma 6 (Monotonic Convergence of the Inner-Loop)

For any K ∈ K, let L(K ) be the control gain for the player w
such that AK + DL(K ) is Hurwitz. Let PL

K be the solution of

(AK + DL(K ))⊤ PL
K + PL

K (AK + DL(K )) + QK

− γ2L(K )⊤L(K ) = 0. (23)

Let L′(K ) = γ−2D⊤PL
K and

ΨL
K = γ−2(L′(K )− L(K ))⊤(L′(K )− L(K )). Then, for a

c(K ) = Tr
(∫∞

0 e(AK+DL(K⋆))te(AK+DL(K⋆))⊤tdt
)
, the following

inequality holds Tr(PK − PL
K ) ≤ ∥ΨL

K∥c(K ).
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Convergence of the Inner Loop Iteration

Theorem 3

For a K ∈ K̆, and for any (p, q) ∈ N+, there exists β(K ) ∈ R
such that

Tr(Pp
K − Pp,q+1

K ,L ) ≤ β(K )Tr(Pp
K − Pp,q

K ,L). (24)

Remark 2

As seen from Lemma 5, Pp
K − Pp,q

K ,L ⪰ 0. By the norm on a
matrix trace (Cui and Molu, 2023, Lemma 13) and the result
of Theorem 3, we have
∥PK − Pp,q

K ,L∥F ≤ Tr(PK − Pp,q
K ,L) ≤ β(K )Tr(PK ), i.e. P

p,q
K ,L

exponentially converges to PK in the Frobenius norm.

Lekan Molu Continuous-Time Stochastic Policy Optimization



Continuous-
Time

Stochastic
Policy

Optimization

Lekan Molu

Outline and
Overview

Risk-sensitive
control

Contributions

Setup

Assumptions

Optimal Gain

Model-based
PO

Outer loop

Stabilization and
Convergence

Sampling-
based PO

Discrete-time
system

Sampling-based
nonlinear system

Robustness Analyses

Numerical
Results

References

53/95

Algorithm as a Policy Iteration Scheme

Choosing a stabilizing Kp we first evaluate u’s
performance by solving (14).

This is the policy evaluation step in PI.

The policy is then improved in a following iteration by
solving for the cost matrix in (15b);

This is the policy improvement step.

Essentially, a policy iteration algorithm whereupon

Performance of an initial control gain Kp is first evaluated
against a cost function.
A newer evaluation of the cost matrix Pp,q

K ,L is then used to
improve the controller gain Kp+1 in the outer loop.
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Sampling-based PO Scheme

A,B,C ,D,E are often unavailable so that the policy
evaluation step will result in biased estimates.

There is the possibility for a divergence from the
stability-robustness feasibility set K̆:

When errors are present from I/O or state data;
Residuals from early termination of numerically solving
Riccati equations;
Using an approximate cost function owing to inexact
values of Q and R;
Since the inner loop is computed in a finite number of
steps;
In a data sampling scheme, we must guarantee the
stability and robustness of the closed-loop system.
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Sampling-based PO: Statement of the Problem

Problem 4 (Sampling-based Policy Optimization)

If A,B,C ,D,E ,P are all replaced by approximate matrices
Â, B̂, Ĉ , D̂, Ê , P̂, under what conditions will the sequences

{P̂p,q
K ,L}

(p,q)=∞
(p,q)=1 , {K̂p}∞p=0, {L̂q}∞q=0 converge to a small

neighborhood of the optimal values {P⋆
K ,L}

(p,q)=∞
(p,q)=0 , {K ⋆

p }∞p=0,

and {L⋆q}∞q=0?
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Discrete-Time Nonlinear System Interpretation

From assumptions, a P0
K ∈ Sn exists such that when

applied to find a K0 such a K0 will be stabilizing.

Approximation errors between the nested iteration steps
yield a hybrid of a continuous-time policy gain pair
(K̂p, L̂q(K̂p)) and a learning scheme.

This learning scheme is essentially a discrete sampled data
from a nonlinear system (owing to errors from various
sources).

Task: under inexact loop updates, lump iterates of gain
errors into system inputs to the online PO scheme;
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Discrete-Time Nonlinear System Interpretation

How do we converge to the optimal solution and preserve
closed-loop dynamic stability?

What does input-to-state stability (ISS) Sontag (2008)
have to do with it?
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Online Model-free Reparameterization

Suppose that P̂0
K ∈ Sn is chosen following the

controllability and stabilizability assumptions.

Then K̂ 1
k = R−1B⊤P̂0

K will be stabilizing since

K̃ 1
k = K̂ 1

k − K 1
k ≜ 0.

Ditto argument for L1.

Problem 5

For (p, q) > 0, show that for K̃p
k = K̂p

k − Kp
k ≜ 0 so that the

sequence {Pp,q
K ,L}

∞
(p,q)=0 converges to the locally exponentially

stable P̂⋆
K ,L.
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Hybrid System Reparameterization

Lump estimate errors as an input into the gain terms to be
computed in the PO algorithm.

With inexact outer loop update, Kp+1 becomes biased so
that the inexact outer-loop GARE value iteration involves
the recursions

Âp⊤
K P̂p

K + P̂p
K Â

p
K + Q̂p

K + γ−2P̂p
KDD

⊤P̂p
K = 0, (25a)

K̂p+1 = R−1B⊤P̂p
K + K̃p+1 ≜ K̄p+1 + K̃p+1, (25b)

NB: Âp
K = A− BK̂p and Q̂p

K = Q + K̂⊤
p RK̂p.
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Discrete-Time System Closed-loop System

Same argument for the inner-loop inexact GARE value
iteration updates:

Âp,q⊤
K ,L P̂p,q

K ,L + P̂p,q
K ,LÂ

p,q
K ,L + Q̂p

K − γ2L̂⊤q L̂q(K̂p) = 0 (26a)

K̂p+1 = R−1B⊤P̂p,q
K + K̃p, (26b)

L̂q+1(K̂p) = γ−2D⊤P̂p,q
K ,L + L̃q+1(K̃p) (26c)

≜ L̄q+1(K̄p) + L̃q+1(K̃p). (26d)

Rewrite the infinite-dimensional stochastic differential
equation as the discrete-time system (for iterates
(p, q) > 0):

dx = [Âp,q
K ,Lx + B(K̂px − DL̂q(Kp) + u)]dt + Ddw . (27)
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System Trajectories from HJB Interpretation

On a time interval [s, s + δs], it follows from Itô’s
stochastic calculus and the Hamilton-Jacobi-Bellman
equation that

d
[
x⊤(s + δs)P̂p,q

K ,Lx(s + δs)− x⊤(s)P̂p,q
K ,Lx(s)

]
=

(dx)⊤P̂p,q
K ,Lx + x⊤P̂p,q

K ,Ldx + (dx)⊤P̂p,q
K ,L(dx). (28)

Along the trajectories of equation (27) and using the gains
in (15), i .e.

Kp+1 = R−1B⊤Pp,q
K , Lq+1(Kp) = γ−2D⊤Pp,q

K ,L.
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System Trajectories

The r.h.s. in (28) becomes

x⊤
[
Âp,q⊤
K ,L P̂p,q

K ,L + P̂p,q
K ,LÂ

p,q
K ,L

]
xdt + 2x⊤P̂p,q

K ,LDdw (29)

+ 2x⊤P̂p,q
K ,LB(Kpx − DL̂q(Kp) + u)dt + Tr(D⊤PD),

= −x⊤Q̂p
Kxdt − γ−2x⊤P̂p,q

K ,LDD
⊤P̂p,q

K ,Lxdt + Tr(D⊤P̂p,q
K ,L

D) + 2x⊤P̂p,q
K ,LB

[
K̂px − DL̂q(Kp) + u

]
dt + 2x⊤P̂p,q

K ,LDdw

(30)
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System Trajectories via HJB Expansions

So that

x⊤(s + δs)P̂p,q
K ,L(s + δs)− x⊤(s)P̂p,q

K ,Lx(s)

=

∫ s+δs

s

[
(−x⊤Q̂p

Kx − γ2w⊤w)dt + 2γ2x⊤L̂⊤q+1(Kp)dw
]

+

∫ s+δs

s
2x⊤K̂⊤

p+1R
[
K̂px − DL̂q(K̂p) + u

]
dt

+

∫ s+δs

s
Tr(D⊤P̂p,q

K ,LD)dt. (31)
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Input To State System Interpretation

System matrices Âp,q
K ,L,B,C ,D now embedded within

input and state terms: Q̂p
K , K̂p+1, and L̂q+1;

Retrievable via online measurements.

We essentially end up with an input-to-state system!

The price that we pay is that the noise feedthrough matrix
D must be known precisely.

No marvel: in many linear stochastic system with
Brownian motion, D is identity (Duncan et al., 2011;
Duncan and Pasik-Duncan, 2010).
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Sampling-based Scheme

Explore system model until we achieve exact equality in
Âp,q
K ,L ≡ Ap,q

K ,L, P̂
p,q
K ,L, K̂p+1 ≡ Kp+1, and

L̂q+1(Kp) ≡ Lq+1(Kp).

Choose u = −K0x + ηp and w = −L0x + ηq where (ηp, ηq)
is drawn uniformly at random over matrices with a
Frobenium norm r similar to (Gravell et al., 2021; Fazel
et al., 2018).
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Sampled System Parameterization

Consider the identities

x⊤Q̂p
Kx = (x⊤ ⊗ x⊤) vec(Q̂p

K ),

γ2w⊤w = γ2(w⊤ ⊗ w⊤) vec(Iv ),

2γ2x⊤L̂⊤q+1(K̂p)dw = 2γ2(In ⊗ x⊤)dw vec(L̂⊤q+1(K̂p)),

2x⊤K̂⊤
p+1RK̂px = 2(x⊤ ⊗ x⊤)(In ⊗ K̂⊤

p ) vec(K̂⊤
p+1R),

2x⊤K̂⊤
p+1RDL̂q(K̂p) = 2(L̂⊤q (K̂p)D

⊤ ⊗ x⊤) vec(K̂⊤
p+1R),

2x⊤K̂⊤
p+1Ru = 2(u⊤ ⊗ x⊤) vec(K̂⊤

p+1R),

Tr(D⊤P̂p,q
K ,LD) = vec⊤(D) vec(P̂p,q

K ,LD). (32)
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Sampled System Parameterization I

Let ∆xx ∈ R
n(n+1)

2
l , ∆ww ∈ R

v(v+1)
2

l , Ixx ∈ Rl×n2 , and
Iux ∈ Rl×mn for l ∈ N+

It follows that

∆xx = [vecv(x1), . . . , vecv(xl)]
⊤ , xl = xl+1 − xl ,

∆ww = [vecv(w1), . . . , vecv(wl)]
⊤ , wl = wl+1 − wl ,

Ixx =

[∫ s1

s0

x ⊗ x dt, . . . ,

∫ sl

sl−1

x ⊗ x dt

]⊤

,
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Sampled System Parameterization

Ixw =

[∫ s1

s0

(In ⊗ x)dw , . . . ,

∫ sl

sl−1

(In ⊗ x)dw

]⊤

,

Iux =

[∫ s1

s0

u ⊗ x dt, . . . ,

∫ sl

sl−1

u ⊗ x dt

]⊤

. (33)

Next, set

Θp,q
K ,L =

[
∆xx ,−2Ixx(In ⊗ K̂⊤

p ) + 2(L̂⊤q (K̂p)D
⊤ ⊗ x⊤)

−2Iux ,−2γ2Ixw ,−vec⊤(D)vec(P̂p,q
K ,LD)

]
, (34a)

Υp,q
K ,L =

[
−Ixxvec(Q̂p

K ), −γ
2Iwwvec(Iv )

]
. (34b)
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Sampled System Parameterization

Define 1q2 as a one-vector with dimension q2. Thus,

Θp,q
K ,L

[
svec(Pp,q

K ,L) vec(K̂⊤
p+1R) vec(L̂⊤q+1(K̂p)) 1q2

]⊤
= Υp,q

K ,L. (35)

Suppose that Θp,q
K ,L is of full rank, then we can retrieve the

unknown matrices via least squares estimation i .e.
svec(Pp,q

K ,L)

vec(K̂⊤
p+1R)

vec(L̂⊤q+1(K̂p))dw

1q2

 = (Θp,q⊤
K ,L Θp,q

K ,L)
−1Θp,q⊤

K ,L Υp,q
K ,L. (36)
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Sampling-based Algorithm
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Robustness Analyses

Define P̃ = PK − P̂K

and K̃ = K − K̂ .

Keep |K̃ | < ϵ, start with
a K ∈ K: iterates stay in
K.

Lemma 7 (Lemma 10, C&M,
’23)

For any K ∈ K, there exists
an e(K ) > 0 such that for a
perturbation K̃ , K + K̃ ∈ K,
as long as ∥K̃∥ < e(K ).

Theorem 6

The inexact outer loop is
small-disturbance ISS. That
is, for any h > 0 and
K̂0 ∈ Kh, if ∥K̃∥ < f (h),
there exist a KL-function
β1(·, ·) and a K∞-function
γ1(·) such that

∥Pp

K̂
− P⋆∥ ≤

β1(∥P0
K̂
− P∗∥, p) + γ1(∥K̃∥).

(37)
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ISS Outer Loop Robustness Proof

Prelim result (Lemma 12, C&M, ’23): For any h > 0 and
K ∈ Kh, let K

′ = R−1B⊤PK , where PK is the solution of
(18), and K̂ ′ = K ′ + K̃ . Then, there exists f (h) > 0, such
that K̂ ′ ∈ Kh as long as ∥K̃∥ < f (h).

Therefore, K̂p
K ∈ Kh for any p ∈ N+.

Let

f1(K̂
′) =

log(5/4)b(h)

2n∥A⋆
K̂ ′∥

, f2(K̂
′) = Tr

(∫ ∞

0
eA

⋆⊤t
K̂ ′ eA

⋆t
K̂ ′dt

)
.
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ISS Outer Loop Robustness Proof

f 1(h) = inf
K̂ ′∈Kh

f1(K̂
′) > 0, f̄2(h) = sup

K̂ ′∈Kh

f2(K̂
′) <∞.

(38)

This implies

Tr(Pp

K̂
− P⋆) ≤ [1− f 1(h)]Tr(P

p−1

K̂
− P⋆)+

f̄2(h)∥R∥∥K̃p
K∥

2. (39)

Repeating (39) for p, p − 1, · · · , 1,

Tr [Pp

K̂
− P⋆] ≤ (1− f 1)

pTr(P1
K̂
− P⋆) +

f̄2∥R∥∥K̃∥2∞
f 1(h)

.

(40)
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Outer Loop Robustness

It follows from (40) and (Mori, 1988, Theorem 2) that

∥Pp

K̂
− P⋆∥F ≤ (1− f 1)

p√n∥P1
K̂
− P⋆∥F +

f̄2∥R∥∥K̃∥2∞
f 1

.

(41)

As p →∞, Pp

K̂
→ P⋆. Whence, a radius of P⋆’s neighbor is

proportional to ∥K̃∥2∞.
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Inner Loop Robustness

The perturbed inner-loop iteration (26) has inexact matrix
Âp,q
K ,L, and sequences {L̂q+1(Kp)}∞q=0, and {P̂

p,q
K ,L}

∞
q=0.

Lemma 8 (Stability of the Inner-Loop’s System Matrix)

Given K ∈ K̆, there exists a g ∈ R+, such that if
∥L̃q+1(Kp)∥F ≤ g , Âp,q

K ,L is Hurwitz for all q ∈ N+.

Lekan Molu Continuous-Time Stochastic Policy Optimization



Continuous-
Time

Stochastic
Policy

Optimization

Lekan Molu

Outline and
Overview

Risk-sensitive
control

Contributions

Setup

Assumptions

Optimal Gain

Model-based
PO

Outer loop

Stabilization and
Convergence

Sampling-
based PO

Discrete-time
system

Sampling-based
nonlinear system

Robustness Analyses

Numerical
Results

References

83/95

Inner Loop Robustness

Theorem 7

Assume ∥L̃q(Kp)∥ < e for all q ∈ N+. There exists
β̂(K ) ∈ [0, 1), and λ(·) ∈ K̆∞, such that

∥P̂p,q
K ,L − Pp,q

K ,L∥F ≤ β̂q−1(K )Tr(Pp,q
K ,L) + λ(∥L̃∥∞). (42)

From Theorem 7, as q →∞, P̂p,q
K ,L approaches the solution

PK and enters the ball centered at Pp,q
K ,L with radius

proportional to ∥L̃∥∞.

The proposed inner-loop iterative algorithm well
approximates Pp,q

K ,L.
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Numerical Results – Car Cruise Control System

(Åström and Murray, 2021, §3.1):

m
dv

dt
= αnuτ(αnv)−mgCr sgn(u)−

1

2
ρCdA|v |v −mg sin θ

(43)

u(x(t)) = [u1(t), u2(t)] must maintain a constant velocity
v (the state), whilst automatically adjusting the car’s
throttle, u1(t), t ∈ [0,T ]

despite disturbances characterized by road slope changes
(u3 = θ),
rolling friction (Fr ), and
aerodynamic drag forces (Fd).
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Numerical Results – Car Cruise Control System

Well-suited to our robust control formulation because

the disturbances and state variables are separable and can
be lumped into the form of the stochastic differential
equations;

it is a multiple-input (throttle, gear, vehicle speed)
single-output (vehicle acceleration) system that introduces
modeling challenges;

the entire operating range of the system is nonlinear
though there is a reasonable linear bandwidth that
characterize the input/output (I/O) system as we will see
shortly.
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Road (Disturbance) Profile
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Search for initial stabilizing gain and H∞-norm
bound.

Proposition 1

(Bruinsma and Steinbuch, 1990) For all ωp ∈ R, we have that
jωp is an eigenvalue of the Hamiltonian H(γ1) if and only if γ1
is a singular value of Tzw (jωp).
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Cost Matrix and Gains Convergence
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Pendulums Experiment – Comparison to NPG
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Model-free design: ∥K̃∥∞ = 0.15.
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Pendulums Experiment – Comparison to NPG
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Model-based design: ∥K̃∥∞ = 0.15.
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Double Pendulum and Acrobot Experiment –
Comparison to NPG

Table: Computational Time: Model-based PO vs. Model-free PO vs.
NPG.

Policy Optimization Computational time (secs)

Double Inverted Pendulum Triple Inverted Pendulum

Model-
based

Model-
free

NPG Model-
based

Model-
free

NPG

0.0901 0.3061 2.1649 0.1455 0.7829 2.3209
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foundation of policy optimization for learning control policies. Annual Review of Control, Robotics, and
Autonomous Systems, 6:123–158, 2023.

K. Glover. Minimum entropy and risk-sensitive control: the continuous time case. In Proceedings of the 28th
IEEE Conference on Decision and Control,, pages 388–391 vol.1, 1989.

P.P. Khargonekar, I.R. Petersen, and M.A. Rotea. H∞ optimal control with state-feedback. IEEE
Transactions on Automatic Control, 33(8):786–788, 1988. doi: 10.1109/9.1301.

Tamer Basar. Minimax disturbance attenuation in ltv plants in discrete time. In 1990 American Control
Conference, pages 3112–3113. IEEE, 1990.

Maryam Fazel, Rong Ge, Sham Kakade, and Mehran Mesbahi. Global convergence of policy gradient
methods for the linear quadratic regulator. In Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages 1467–1476. PMLR,
10–15 Jul 2018.

Lekan Molu Continuous-Time Stochastic Policy Optimization



Continuous-
Time

Stochastic
Policy

Optimization

Lekan Molu

Outline and
Overview

Risk-sensitive
control

Contributions

Setup

Assumptions

Optimal Gain

Model-based
PO

Outer loop

Stabilization and
Convergence

Sampling-
based PO

Discrete-time
system

Sampling-based
nonlinear system

Robustness Analyses

Numerical
Results

References

94/95

References II

Benjamin Gravell, Peyman Mohajerin Esfahani, and Tyler Summers. Learning optimal controllers for linear
systems with multiplicative noise via policy gradient. IEEE Transactions on Automatic Control, 66(11):
5283–5298, 2021.

D. Jacobson. Optimal stochastic linear systems with exponential performance criteria and their relation to
deterministic differential games. IEEE Transactions on Automatic Control, 18(2):124–131, 1973. doi:
10.1109/TAC.1973.1100265.
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